🤔 Основы математики в Machine Learning / Deep Learning
🗓 6 марта приглашаем вас на прямой эфир, где мы подробно разберем ряд Тейлора, собственные векторы и другие ключевые понятия в ML. (ссылка)
🌟 Спикер: *Мария Горденко* – Старший преподаватель ФКН НИУ ВШЭ, НИТУ МИСИС, аспирант департамента анализа данных и искусственного интеллекта ФКН НИУ ВШЭ, а также преподаватель на курсе Алгоритмы и структуры данных в proglib academy.
Место работы: Инженер-программист, ведущий эксперт НИУ ВШЭ, цифровой ассистент и цифровой консультант НИУ ВШЭ.
😮 На вебинаре вы узнаете:
🔵 Теорию вероятностей: обсудим случайные величины, вероятность, математическое ожидание и дисперсию.
🔵 Линейную алгебру: изучим векторы, матрицы, собственные векторы и собственные значения.
🔵 Математический анализ: разберем производные и разложение функций в ряд Тейлора.
🔵 Практику: применим полученные знания на реальных кейсах из области Machine Learning и Deep Learning.
🎯 Почему это важно? Понимание математических основ помогает глубже разобраться в работающих под капотом алгоритмах ML/DL и эффективно применять их на практике.
👉 Присоединяйтесь к нам и совершенствуйте свои навыки в машинном обучении!
🤔 Основы математики в Machine Learning / Deep Learning
🗓 6 марта приглашаем вас на прямой эфир, где мы подробно разберем ряд Тейлора, собственные векторы и другие ключевые понятия в ML. (ссылка)
🌟 Спикер: *Мария Горденко* – Старший преподаватель ФКН НИУ ВШЭ, НИТУ МИСИС, аспирант департамента анализа данных и искусственного интеллекта ФКН НИУ ВШЭ, а также преподаватель на курсе Алгоритмы и структуры данных в proglib academy.
Место работы: Инженер-программист, ведущий эксперт НИУ ВШЭ, цифровой ассистент и цифровой консультант НИУ ВШЭ.
😮 На вебинаре вы узнаете:
🔵 Теорию вероятностей: обсудим случайные величины, вероятность, математическое ожидание и дисперсию.
🔵 Линейную алгебру: изучим векторы, матрицы, собственные векторы и собственные значения.
🔵 Математический анализ: разберем производные и разложение функций в ряд Тейлора.
🔵 Практику: применим полученные знания на реальных кейсах из области Machine Learning и Deep Learning.
🎯 Почему это важно? Понимание математических основ помогает глубже разобраться в работающих под капотом алгоритмах ML/DL и эффективно применять их на практике.
👉 Присоединяйтесь к нам и совершенствуйте свои навыки в машинном обучении!
The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.
Telegram Auto-Delete Messages in Any Chat
Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.